Identification and Discrimination

As we began Chapters 4 and 5, so we shall also begin this chapter by presenting, in
Section 8.1, the form in which the data are given—in this chapter, for purposes of
identification. We must, of course, already have groups of individuals or OTU’s
against which to identify an unknown, and these groups will normally be taxa.
General considerations for identification and discrimination follow in Section 8.2,
and sequential and simultaneous keys are considered in Sections 8.3 and 8.4,
respectively. We conclude the chapter with a discussion of discriminant functions
in Section 8.5.

Work on identification has not been as intensive in recent years as has been the
work on classification. Thus much of the discussion that follows must be tentative
and programmatic rather than definite. However, we hope that just as our earlier
outline of procedures for classification (Sokal and Sneath, 1963) led to an increased
development and improvement of such methods, so the sections that follow will
stimulate biologists, mathematicians, and computer scientists to produce a theory
and technology of taxonomic keys compatible with our present knowledge and
capabilities. There are already signs that the field will advance swiftly.
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8.1 THE IDENTIFICATION MATRIX
A data matrix arranged for purposes of identification may be called an identification
matrix #. It is shown in Table 8-1. It consists of a number of submatrices, that is,

TABLE 8.1.

The identification matrix # and vector u.

Taxa
Characters
Unknown
OTU’s in taxon A OTU’s in taxon J OTU’s in taxon Q OTU
Aoty : TR SO g, g0 tg u
1 Xiaar - X a0 X Xip o X Xiage - Xy
2 Xoaar-- 2 X5 Xoa Xyap oo n Xgjps o Xoaq - Xy
n XnnA"""anA?""XnM Xnn.l"" Xan"" an

it is partitioned vertically into g blocks, each block representing a taxon
J=(A,B,...,J,...,Q) Within any block J are the individuals or OTU’s that
provide the information on the taxon, i.e., they are the sample of organisms that
represent the taxon. These OTU’s are numbered a,,...,j;,...,t; within each
block J. The rows of the matrix represent the n characters (/, 2,...,i,...,n) for
the OTU’s. A character state value in this matrix has three subscripts; thus X ;i is
the value for the ith character of the jth OTU of the Kth taxon. One or more
subscripts will be omitted when the meaning is clear. The matrix may, of course.
be partitioned differently if the taxonomic rank of the taxa to be considered is
changed; thus in studying a family, for example, one partition might be into tribes.
another into genera. The .# matrix may often be the same as the original data
matrix (Section 4.1) except that the OTU’s are reordered and grouped into taxa.

On the right of Table 8-1 we have a column vector for the unknown OTU (an
individual) to be identified, symbolized by u. Its elements are character state values
symbolized as X;,, where i = /,2,...,1i,...,n, as before. Capital letters symbolize
taxa to emphasize their resemblance to matrices rather than to vectors. Thus.
though we may replace the taxon by character averages (for example), these are
obtained by operating on an n x t; block of the .# matrix; the vectors representing
the averages are collected into a new matrix, in which column vectors represent
taxa as averages of character values. Clearly, too, we may have many unknowns to
identify, but at any one instant we normally have only one. Successive identifica-
tions thus formally entail replacing u by other unknowns in turn.

In most applications the matrix will not be partitioned horizontally ; the same
n characters will normally be recorded for all taxa. However, though n may be the
number of characters studied in the whole numerical taxonomic study, we may
discard some of them as being of little value in identification and to reduce un-
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necessary computation. Where it is pertinent we will use m < n to show that n has
been reduced to a smaller character set (this is a use of m different from that in
Section 4.4, where it means the number of matches in an association coeflicient,
and is different from m used for the number of states of a character in various
sections).

Since characters are quite properly weighted for identification, we require a
symbol for this, and use w;; for the weight of the ith character when testing u as
a member of taxon J, or w;;x when deciding between taxa J and K. This is princi-
pally used in discriminant analysis (Section 8.5). Over all characters the weights
constitute a vector w. Moreover, certain characters should be preferred over others
because they are readily and constantly observable, so that an additional weight,
e (expressed as a vector ej), may be given to symbolize ease of observation of
character i in taxon J.

Missing values in the identification matrix may be coded NC, but they are of
two types that may sometimes require separate symbols. These may simply be
unrecorded values (e.g., petal color blue, but unrecorded) or they may be inapplic-
able (e.g., petal color when there are no petals). They need distinguishing, because
a specimen with blue petals can be excluded as a member of a species without
petals, but it could belong to a species whose petal color had not been recorded.

The identification matrix is often transformed into some other matrix before
constructing a scheme for identification. There are two main types of transformed
matrix. The first replaces the t; columns of a taxon J by one or two columns repre-
senting some simplified summary of the character values, such as their means,
ranges, standard deviations, and for 0,1 characters in particular, the proportion
of OTU’s with a given state. The second main form is a variance-covariance matrix
ror a correlation matrix) between characters together with vectors of means, the
starting point for discriminant analyses.

8.2 GENERAL CONSIDERATIONS

The objects of any identification scheme are ease and certainty of identification
1Davis and Heywood, 1963). All other considerations are secondary. If one identi-
fies an unknown specimen, this presupposes that one already has taxa with which
to identify it. The form of the identification matrix shows this clearly. We distinguish
therefore between classification in the sense of making classes, clusters, or taxa,
and identification. The use of the word classification by many statisticians to mean
Wentification is particularly confusing, and this is why we emphasize the point.
There are some strategies that combine the two procedures, usually by successively
“identifying” new individuals, but these also require criteria for deciding when
dentification with an existing class is unacceptable, so that new classes may be
started (e.g., Ornstein, 1965 ; Rosen, 1967). These methods then become effectively
Juster analyses, and we believe the distinction is a useful one.
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The main methods used in identification are keys and discriminant functions.
By far the commonest and most versatile are the former. Two differences between
identification keys and classifications may be noted. Keys are not necessarily
natural classifications in any of the usual senses. The divisions of the key may be
quite arbitrary, as long as they are convenient for identifying specimens. Also, the
same taxon can key out many times in different parts of the key; it need not have a
unique position. Discriminant functions are more restricted in scope and much
less often used. The various subdivisions of these methods are described later in
this section, so we digress now to some general points about discriminator
characters.

We noted in Section 8.1 that characters are quite properly weighted for purposes
of identification. There are two main approaches to calculating the appropriate
weights, w;;. The most usual is based on the frequencies of various character states
in different taxa but ignores correlations between characters. A detailed discussion
is given by Ledley and Lusted (1959a). Since highly correlated characters tend to
behave as a single character, this approach is likely to give overestimates of the
probability that a given identification is correct (a good study of this is that of
Mosteller and Wallace, 1964). The other approach considers the correlations
between characters and is employed particularly in discriminant analysis. It is
theoretically more powerful and precise.

Another, different form of weighting noted in the previous section is weighting
according to ease of observation of different characters, e;;. Characters that are
prominent, unlikely to be confused, and found in all specimens and during much
of the life cycle (or in plants, throughout the year) are to be preferred. These weights.
though unavoidably subjective in part, should also take account of the chance of
loss of organs through damage or the cost of obtaining a given measurement.

In practice it is usual to reduce the original list of n characters to a smaller list
of m characters, (the smallest effective number). The choice of characters for dis-
crimination may be carried out in many ways. Inspection of the original tables of
data after rearranging the columns to give the .# matrix is the most usual (e.g.
Steel, 1965; Moss, 1968a). A character that is invariant throughout is clearly
useless, but unless the data being used are part of a larger study, such characters
will have already been deleted. For two-state characters one can use the algebraic
difference between the frequencies in two taxa of the 1 state symbolized as G by
Sneath (1962); the most discriminatory characters have the highest values of G
(positive or negative). This is a simple method that Hall (1965b) found useful in a
botanical study, but nonadditive scoring (Section 4.8) causes difficulty.

Gyllenberg (1963) obtains the 0,1 characters most useful as discriminators (on
the average) as follows. The proportion of the 0 or 1 values for character i, which-
ever is the greater, is noted for each taxon, and Gyllenberg calls this C. The sum of
C over all g taxa, ZC; for character i, is then a measure of the value of i for separating
groups. Charactersthatareleast variable within taxascore highest,and3q < ZC < ¢.
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Next a separation figure, S;, is calculated for the character, which is the product
of the number of taxa, ¢,, in which the character is predominantly 1 and of the
number of taxa, g, in which it is predominantly 0 (using chosen cutoff levels such
as 0.9 and 0.1). The value of S; 1s greatest for characters that divide the taxa as
nearly as possible into equal halves. The general usefulness of a character as a
discriminator is indicated by the rank figure, R;, which is ZC; x §;. Characters
with the highest R; are preferred for constructing identification schemes. It is often
sufficient to calculate the values of S; and an example of its use to select new tests
in bacteriology is given by Lapage and Bascomb (1968).

Maccacaro (1958), Moéller (1962a,b,c) and Jigin, Pilous, and Va$icek (1969) use
rather similar methods but employ information statistics. This can be generalized
to multistate characters, and the expression Zj_, [ —(Z{_ ,p,, log,p,;)], where p,;
1s the proportion of the gth of the m states of the character in the Jth taxon, may
be useful. Niemald, Hopkins, and Quadling (1968) give two methods for 0,1
characters. The first is to compute for each character the quantity log (g, + ¢,)!
—{log g,! + log g,!). The highest values are given by the characters that are the
best separators. By an extension of this last formula theyalso obtain the m characters
that are jointly the best (which are not necessarily those with the highest values
when considered singly). The second method is to operate on the . matrix and
to delete characters in turn, providing the deletion does not make any pair of
taxa indistinguishable. The character states for the taxa are recoded as 1 and — 1
i1t is implied that the commoner state is used), and 4; = X, X,| is calculated for
each character. The characters are then discarded in diminishing order of 4, (this
deletes the least useful characters first) until the chosen number, m, remain.

Another way to rank characters is the method developed by Bonham-Carter
11967a), who does so by the magnitude of chi-square values. His null hypothesis
1s the independence of the taxa from marginal totals of the characters summed over
all taxa. Several of the information-theoretic methods can also be adapted for this
purpose (e.g., Estabrook, 1967; Bisby, 1970b).

The classificatory method of Lockhart and Hartman (1963) and association
analysis (Williams and Lambert, 1959 ; Section 5.4) extract discriminatory charac-
ters in the course of constructing monothetic groups. Although most taxa are at
least partly polythetic, one may find some character states that sharply distinguish
any two taxa; that is, they are present in all members of one taxon and absent in
all members of the other. There may be no single states of this kind, but it may be
possible to distinguish the taxa by using several character states that occur with
different frequencies in the two taxa. This latter situation, phenetic overlapping, is
found in taxa that are fully polythetic (see Section 2.2). It is here that discriminant
analysis (Section 8.5) is particularly valuable.

The minimum number of characters for discrimination is easy to calculate. No
more groups can be distinguished than the product of the number of character
states. Thus three characters, two of three states and one of four states, allow at the
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most the distinction of 3 x 3 x 4 = 36 groups. In general: log (number of dis-
tinguishable groups) < X(log number of character states). Actually, because of
character correlations only rarely will the number of distinguishable groups be as
large as the product of the number of character states. In practice many more
characters are required than the theoretical minimum: examination of various
dichotomous keys in the literature shows that a given character seldom serves as
a convenient separator in more than one part of the key, so that one needs about
as many characters as there are branches, even if one character (and not more) is
used at each branch point. Since for a dichotomous key g — 1 branches are needed
to separate q taxa, the ratio of characters to taxa, m/q, is usually over 1 and may be
as high as 2 or 3 if the taxa are difficult to separate, or if the author wishes to make
a very reliable key. The contrast between theory and practice is seen by the fact
that the theoretically minimum number of characters required to separate an
estimated ten million species of living organisms is only 24 two-state characters.
whereas Munroe (1964) believes that about 500 characters would be needed in
practice. Munroe’s figure is probably an underestimate, but since it is not likely
that ten million characters would be needed, this suggests that the relation of m
to ¢ is still poorly understood (see Ledley and Lusted, 1959a,b; Osborne, 1963a,b)
and needs further study.

It should be noted that there are two possible errors in identification. First, an
unknown may be identified as a member of taxon J when it should be identified
with another taxon in the scheme, K. Second, an unknown is identified with J but
belongs to a taxon outside the study entirely. Some schemes use a criterion for
successful identification and include a provision for recording “‘no identification
made” to guard against the second danger. But this possibility is still a serious
danger, because such tests will not always work. If, for example, some very similar
taxa were inadvertently omitted it is likely the characters that discriminate between
them and the included taxa might not have been chosen. Identification schemes
should therefore be comprehensive with regard to taxa, and limitations of age, sex.
life stage, etc., must be clear. A third type of error is of course the exclusion of
an unknown from any of the known taxa when in fact it is a member of one of
these.

Identification methods overlap a good deal, but we divide them into two main
types, the sequential and the simultaneous. The sequential methods are the usual
diagnostic keys and certain related schemes like multiple entry keys. Sequential
methods can be divided into monothetic and polythetic ones. The simultaneous
methods include discriminant functions and also others where some measure of
agreement over all characters is employed, so that the identification can be made
at one step. The synoptic table is an informal device of this kind. In many of these
methods the unknown is in effect placed in a phenetic space and its closeness to
(or inclusion within) known clusters is determined ; they can therefore be considered
as phenetic distance models. But not all involve distances, so the broader term of
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simultaneous methods is preferred here. Simultaneous methods are almost always
polythetic.

Discriminant functions are probabilistic by design, and any of the others can
be made so. By probabilistic we mean that some measure is given of the likelihood
that the identification of a given specimen is correct. The need for this is least at
high ranks, where taxa are sharply distinct.

This aspect should be given more attention and identification schemes should
wherever possible be thoroughly tested with specimens that were not used in their
construction. Probabilistic considerations also enter in another way. Schemes can
be devised that identify members of some taxa with higher probability than others.
In some work the Bayesian approach, in which the probabilities of correct identifi-
cation are highest for the commonest taxa, might be desirable on the grounds that
occasional misidentification of a rarity was less serious than misidentification of
common forms; but in other work a converse approach might be desirable. It may
be noted that these probabilities are not necessarily related to the weights given
to the characters, for in monothetic keys the effective weight at a given couplet is
nfinite, because all other characters are ignored at this division.

Yet another consideration of probability that will affect the identification pro-
cedures, especially in large scale screening, is the Bayesian consideration of the
hkelihood of a given taxon being found in nature. We are less likely to identify an
unknown OTU u as belonging to taxon J if we know that only very few individuals
belonging to J have ever been collected. These considerations, which have not so
far been extensively applied to identification schemes, are relevant to both sequential
and simultaneous procedures.

Identification schemes, like other algorithms, can handle only a certain limited
number of taxa conveniently. If there are too many taxa they must be divided into
several schemes, and a sequential strategy is then superimposed on that of the
schemes themselves. In this the schemes are much affected by practical considera-
uons—Ilength or complexity, the number of characters demanded, etc.—all of
which must be balanced against their success rate.

Computers will increasingly be used in this field as electronic data processing
comes into use in systematics. The only practicable way of originally calculating
discriminant functions is by computer. Some taxometric programs now provide
hsts of characters of high discriminatory value. We need, however, to distinguish
two different uses of computers in this connection. First, the computer may make
a key or discriminant function that can be printed and used independently. This
may be their major use for some time to come. Second, the identification scheme
may be stored in the computer so that it is used ““on line”. This is most promising
for simultaneous methods with large collections of data (e.g., Goodall, 1968a;
Lapage et al., 1970). We have pointed out elsewhere (Sokal and Sneath, 1966) that
this will make acute the problem of standardizing descriptive terms throughout
karge taxa.
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8.3 SEQUENTIAL KEYS

Sequential keys can be constructed according to any desired sequence of divisions
of the set of taxa into successively smaller subsets. The first decision is whether the
sequence 1s to follow the established taxonomic hierarchy, or whether the most
efficient but probably quite artificial system is to be used. Since the objectives of
identification are different from those of classification, there is no strong reason
why the taxonomic hierarchy should be embodied in the key, although in large
studies it may be convenient to set up successive keys based on selected rank
categories. Thus in a family one may have a key to genera, and for each genus a
separate key to species, but the key to genera need not show the subfamilies and
tribes.

As noted earlier, a given taxon may occur many times at the tips of the key
(though this may lead to the suspicion that it is not a very natural taxon). This is
better than to construct the key so that the taxon occurs only once with many
cross-references from other parts of the key (Davis and Heywood, 1963). Osborne
(1963a,b) believes that such repetition (he calls keys of this type reticulated) is
likely to be inefficient on mathematical grounds.

Although keys can have more than two alternatives at each step, the clarity of
dichotomous keys is a considerable advantage, and we therefore restrict our dis-
cussion to them. Osborne discusses several aspects of the branching structure and
how one may make the key as short and efficient as possible. A dichotomous key
for q taxa has ¢ — 1 branch points (unless taxa occur more than once at the tips).
The number of furcations is thus the same however it is arranged (Figure 8-1), but
if the OTU’s are split off one at a time, using distinctive characters, then the key
requires g — 1 different characters (Figure 8-1,b). Furthermore the average number
of characters that must be examined to identify an unknown specimen is higher
(and very much higher for large g), than if the paths bifurcate repeatedly (Figure
8-1,a). Osborne notes that the latter type of key is generally easiest to use, most
rapid and most reliable. There are occasional exceptions (because it may sometimes
be convenient first to dispose of a few highly distinctive taxa using characteristic
features), but in general each division should be made on a character that as nearly
as possible divides the taxa under consideration at that point into equal halves. This
conclusion is also reached on grounds of information theory (Maccacaro, 1958;
Rescigno and Maccacaro, 1961 ; Moller, 1962a,b,c) and underlies several of the
methods for choosing diagnostic characters mentioned in the last section. With
repeated branching one can key out 2™ taxa in m levels of the key, theoretically
using only m characters. Osborne points out that if the chance of making a mistake
in answering a question is the same for each character, this key will give fewest
errors. These considerations may not be important in practice, however. The
procedure of finding characters that give division into equal numbers of taxa
could lead to unreliability at later branches. The distinctive characters may be less
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FIGURE 8-1

Two arrangements of a dichotomous key for eight taxa, A to H. The characters used are symbolized
as [ 1o 7, each with two states, present (+) or absent (—). a, The paths branch repeatedly, and only the
theoretical minimum of three characters is required. The number of characters to be examined to
sdentify an unknown specimen is three. b, One taxon is split off at a time on the basis of a distinctive
character. Now seven characters are required and the average number that must be examined is
38=35

liable to errors than the others. Also, as noted in the last section, it is rare that any-
thing like the theoretical minimum will be sufficient.

The “‘bracket” and the “indented” keys are the most common forms, though
the terminology is confusing since either can be indented; they differ mainly in
1vpographic layout and are illustrated by Mayr (1969a, p. 278). The bracket key
15 the most generally useful, because it can be worked in reverse so that one can
retrace a false lead. We do not describe the details of making keys and refer the
reader to the articles of Ainsworth (1941), Voss (1952), Metcalf (1954), Stearn
(1956), and Mayr (1969a). It may be quite difficult to make a good key that is
simple, short, and efficient. Blackwelder (1967a) notes that at high taxonomic
ranks the choice of characters may be very difficult, because some exceptions are
likely to occur with most characters (for example, there are arthropods without

legs).

Monothetic Sequential Keys

Monothetic sequential keys have a single contrasting statement in each couplet,
referring to only one character, to be answered (in principle) by a single yes or no.
They are, of course, vulnerable to exceptions, as are all monothetic schemes.
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Osborne (1963a) suggests that the characters should be scaled on an integer scale
of 1 to 4 so chosen that the compiler can be fairly sure the user will recognize the
correct integer from his examination of the specimens to be identified. With this
scheme the key will be reliable if every taxon differs from every other by at least a
score of 2 upon one or more of the characters.

Several on-line computer schemes are now being developed. Rypka et al. (1967)
and Rypka and Babb (1970) have incorporated Gyllenberg’s scheme (Section 8.2)
into a computer program with some additional modifications. They first compute
Gyllenberg’s S for each character and select the character with the highest value.
This 1s the best initial separator; they then choose as the next character the one
giving the highest joint S with the first. The third character chosen as divisor is that
with highest joint S with the previous two, and so on. The joint S is calculated as
follows

Sioim =3[4° — (@ + a + ... + ¢2)]

where ¢ is the total number of taxa, and ¢, + ... + ¢. are the numbers of taxa
possessing the z various unique combinations of 0,1 states in the n characters
considered. With binary characters as here, z = 2", but many of the combinations
will probably not occur. Rypka and his coworkers note that one can compute
directly the best pairs, triples, quadruples, etc., of characters, using all possible
combinations of the characters, but this makes heavy demands on computing
time. Although intended to identify bacteria, this method is likely to make insuffi-
cient provision for exceptional isolates, and may be more suited to higher organisms.

Multiple entry keys are another group of keying schemes that are generally
monothetic and sequential. A good description of one form is given by Leenhouts
(1966). Each taxon is listed against each character arranged under the two leads.
for example:

Leaflets Taxa
(a) Entire A BD(F)(G*)
(b) Not entire CE (F)(G")

Taxa that can possess either state are in parentheses, and those whose state is
unknown are given also asterisks. To use the key one chooses any character and
excludes taxa that do not agree, then chooses another character, and continues
until only one taxon is left. The principle is readily applicable to superimposed
punched cards (*‘peek-a-boo’” systems), of which a good example is a key to the
families of flowering plants produced by Hansen and Rahn (1969). Each card
represents a character with a fixed position on it for each taxon; selections of cards
are superimposed until only one perforation remains, indicating the required taxon.
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For example, overlapping cards No. 8 (tendrils present), No. 53 (flowers zygo-
morphic), and No. 133 (carpel 1) leaves only family-—No. 29 (Papilionaceae). The
principle is also readily applied to on-line computing, and descriptions of systems
that follow a similar strategy have been given by Boughey, Bridges, and Ikeda
(1968), Goodall (1968a), and Morse (1971). An advantage of multiple entry keys
is that the user may employ any of the key characters that are available on the
specimen ; with the usual keys he must have the very characters required for each
couplet in turn.

Although monothetic groups are seldom required in taxonomy, monothetic
cluster methods (e.g, Maccacaro, 1958; Williams and Lambert, 1959; Lockhart
and Hartman, 1963) may be useful for constructing keys because they yield charac-
ters that are likely to be near optimal for key making. For this purpose Gower
(1967a) has suggested subdividing on the character that, at each dichotomy,
maximizes the multiple correlation between it and all previously unused characters.

Polythetic Sequential Keys

Polythetic sequential keys are keys in which at least some couplets consist of
several statements about different characters. These are the commonest form of
taxonomic key. The reasons for using several characters are threefold: (1) one or
more characters may be unobservable on some specimens (for example, damaged
specimens or plants not in flower); (2) there are a few taxa (or individuals) excep-
tional in the most readily observed characters; and (3) the user may make a mistake
in deciding about a character. In each case the other characters help the user to
decide which branch to take. The basic idea is that of the majority vote; unless the
key says otherwise, the user is best advised to follow the majority verdict (we note,
however, that this is rarely stated explicitly, and some workers intend the first
character to be more important than the others). In other words, the user gives
preference to the alternative most similar to his specimen, but no cone character is
essential. The strategy is thus basically polythetic, consisting of a comparison of
the specimen with the statements in the couplet, followed by choice of the best
match.

This procedure affords many advantages, not the least of which is a better pros-
pect of accurate probabilistic estimates. It does have the disadvantage of being
somewhat less clear-cut. Also, the procedural rules we have just mentioned are not
self-evident. Polythetic keys, therefore, require some formalizing. With monothetic
keys, at any branch point the single character has decisive value (all others have
zero weight). In polythetic keys the characters require weights, either differential
weights or else a specific statement that they are equal. Hall (1965b) gives an illustra-
tion of a key in which such weights are attached to each character in the couplets.
These weights are not only the statistical discriminatory weights, w;, but also the
ease of observation values, ¢;. The latter cannot be so readily estimated as the former,
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for they depend a good deal on the experience of the user, so the practical problems
of using keys are clearly relevant here. For example, are the difficulties due more
to poor character descriptions (perhaps they are described in highly technical
language without a diagram, one of the biggest stumbling blocks for the in-
experienced) or to difficulty of observation, as when special microscopic prepara-
tions are essential?

Several methods have been developed for producing keys automatically by
computer (Morse, 1968, 1971; Pankhurst, 1970a,b; Hall, 1970). Pankhurst gives
extensive details of the technique he uses. The key is constructed from a table of
character state values for the taxa. These values can be qualitative or quantitative,
and provision is made for missing data, although if there are many missing entries
this greatly increases the difficulty of making a key. The number of characters at
each branch point can be controlled. Either an ““indented” or “bracketed” key
can be produced (either of them with or without typographic indentation) in a
form ready for use (Figure 8-2). When a taxon keys out, all remaining distinctive
characters for that taxon are furnished by the computer program ; they are useful
as a check on the identification. The user can allocate weights, w; or ¢;, to each
character, or he can weight the taxa to obtain short identification routes to taxa of
his choice (such as commoner ones). Taxa are allowed to key out several times if
this is the only way to get a key, and highly distinctive taxa key out early (but this
is allowed to happen only rarely because it interferes with the attempt to optimize
the key). The basic procedure is to find characters that divide the taxa into equal
halves, with preference given to dichotomies over polychotomies. Pankhurst uses
a separation function F = F, + F,, where

k
Fy=(k~2%and F, = } [l ~ (g, k/g,)
b=1

and where, at a given branch point, a, with g, taxa under consideration, there are
k subgroups each containing g, taxa. The divisions on different possible characters
are tested, and that with minimum F is preferred subject to certain accessory con-
ditions, such as that characters with high w; are considered first. The methods of
Morse and Hall use rather similar principles. Morse (1971) makes special provision
for characters that are variable within taxa. The character for the initial couplet is
the one giving the highest value of DV x exp {CV} provided the character is not
unknown or inapplicable for any of the taxa under consideration. DV is calculated
as 2qrqr + 3qv(qr + qr) where gy, gy, and g, are the numbers of taxa for which
the answer to the first lead is true, false, or variable, respectively. The value CV is a
“convenience value™ given to the character by the user. This procedure is repeated
for subsequent branches of the key. )

Computer-made keys are generally as short or shorter than manual ones, and
if appropriate values of w; are chosen they appear comparable to manual keys in
quality. It is likely that in the near future they will become superior to those



Stem 0-10 cm
Sterile rosettes absent, capitula maore than 3 cm
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2
17 J. fontqueri

Sterile rosettes present, capitula up to 3 cm 3

3 Capitula obconical, involucral bracts lax, patent or recurved 15 J. humilis
3 Capitula subglobose, involucral bracts appressed 16 J. taygetea
Stem more than 10 cm a

Pappus shaorter than achene
Pappus longer than achene

11 J. polyclonos
5

5 Involucral bracts lax, patent or recurved 6
6 Capitula more than 3 cm 7
7 Stem leafy throughout 10b J. mollis. ssp. moschata
7 Stem leafy at base 8
8 Involucral bracts lanceolate 10 J. mollis
8 Involucral bracts linear 14 J. glycacantha
6 Capitula up to 3 cm 9
9 Stem woody at base 6 J. albicaulis
9 Stem herbaceous 10

10 Basal leaves subglabrous above, tomentose beneath, achene more than
5 mm 9 J. eversmanii
10 Basal leaves puberulent above, tomentose beneath, achene 2-5 mm 12 J. ledebouri
5 Involucral bracts appressed 11
11 Basal leaves subglabrous above, tomentose beneath 12
12 Distal crown of achene inconspicuous 13
13 Capitula subglobose 8 J. cyanoides
13 Capitula hemispherical 13 J. consanguinea
12 Distal crown of achene conspicuous 14
14 Rhizome absent 2 J. stoechadifolia
14 Rhizome present 3 J. tzar-ferdinandi
11 Basal leaves arachnoid tomentose 15
15 Sterile rosettes present 16
16 Basal leaves pinnatifid, capitula obconical 4 J. pinnata
16 Basal leaves entire, capitula hemispherical 7 J. kirghisorum
15 Sterile rosettes absent 17
17 Stem woody at base, basal leaves entire 1 J. linearifolia
17 Stem herbaceous, basal leaves pinnatifid 5 J. tanaitica

FIGURE 8-2

A computer generated key of an “indented”’ type for European species
of Jurinea (Compositae). The figure has been arranged to reflect, for
the most part, the format a computer line-printer would adhere to,
though in some details (typeface and line width), line-printer output
would differ. [From Pankhurst (1970b).]

generally made by hand, and can be made even when the number of taxa is other-
wise discouragingly large. It is, however, necessary to provide considerable amounts
of accurate data in the form of the matrix of taxa and characters, though this would
generally be easy after a numerical taxonomic study. It is especially important for
the range of within-taxon variation to be known.

Estimates of the probability of correct identification are likely to be more
accurate with several characters to a couplet than one. The methods of estimating
these are discussed in the next section, for they are basically the same as for simul-
taneous keys (but on a restricted character set). If the characters are quite few, it
may be feasible to do direct counts of OTU’s with different character combinations
and use these as rough estimates of the underlying natural phenetic distributions.
Because the manual testing of keys is a laborious business, it would be useful to
have a computer program that would generate hypothetical specimens by a Monte
Carlo process from plausible frequency distributions of the character states. It
could then test computer-made keys for their success rating and also pick out taxa
that are not readily separable, which need further attention. Polythetic sequential
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keys should not list more characters than are necessary in practice, or much of their
convenience will be lost.

Any sequential key can be made probabilistic, though this is rarely done. The
main attempts have been made by Méller (1962a,b,c) and Hill and Silvestri (1962).
Each tip of the key has an associated probability that a specimen that keys out to
this position will be identified correctly. These probabilities should be as close to
1.0 as possible. A major problem is the accurate estimation of the probabilities:
with monothetic keys one would expect that errors of estimate would accumulate
rather readily. It is likely that Monte Carlo methods would have to be used in
the way mentioned above.

8.4 SIMULTANEOUS KEYS

Simultaneous keys are those in which the unknown is compared in turn with all
the taxa in the hope of obtaining an unambiguous identification with one of them
in a single step. Their form is most often a table of m characters against the ¢ taxa.
in which entries are the typical or commonest values for the taxa. The vector u of
the unknown is compared in turn with each column, and the taxon with which it
shows closest agreement is taken as the correct identification. The underlying
concept is thus polythetic, and a simultaneous key is formally the same as a multiple
branch point in a sequential polythetic key. Indeed, in any large study it becomes
necessary to adopt a sequential strategy by breaking the full table into sections
and to make the identification first to the major groups of taxa, and then to indivi-
dual taxa. This is because too large a table is inefficient, as many of the characters
are redundant for any one attempted identification; it is therefore best to use
successive small tables. A good example is the work of Cowan (1965) and Cowan
and Steel (1965), where a table is used to identify two major groups of genera, and
for each such group a separate table is provided to carry identification to the
genus. Such a scheme is, of course, virtually a multiple choice sequential polythetic
key, but with numerous characters.

Any resemblance measure can be used to assess the best match. The usual one (as
in Cowan and Steel’s work) is the number of agreements for 0,1 characters. Cowan
and Steel note, however, that there are difficulties with this simple method (which
is analogous to using S, with equal weighted characters). Among these is the
problem that for some characters the 0 states may have dubious significance; they
may indicate a clear-cut negative or that chemical tests may not have been performed
properly. And of course the characters are not explicitly weighted. Corlett, Lee.
and Sinnhuber (1965) have used this method in a computer-based scheme where
a punched card with 19 test results is fed in to afford identification of a bacterium
- A similar computer method is described by Walker et al. (1968) for pollen grains
Elimination of taxa as possible answers must be made on some chosen low value
of the resemblance measure. Increased power would come from giving each
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character value X;, a weight w;; and an ease of observation value e, so that
during computation the contribution to the resemblance due to X, was multiplied
by w;y x e, ; whatis effectively weighting of thiskind is used in some of the methods
described below and in the next section.

A related concept is that of giving each taxon a limiting envelope and treating it
as if it occupied a definite volume in A-space. An unknown is then identified with
the taxon closest to it. Furthermore, one can tell if the unknown is outside any
taxon or is intermediate between two taxa. This concept is mainly associated with
discriminant analysis but need not be restricted to it. Any phenetic space can be
used, and angular measures of resemblance can be treated as great circle distances
on a unit hypersphere (see Firschein and Fischler, 1963). Ordinary Euclidean
distances are easier to handle, however. This model therefore extends the idea of a
central position of a taxon to include also a measure of its size, most readily as the
measure of the radius of a hypersphere. This is satisfactory if the taxa are roughly
hyperspherical, but if they are markedly elongated because of pronounced correla-
nons between characters, then discriminant analysis is better (discriminant analysis
effectively makes the taxa as nearly hyperspherical as possible in a transformed
phenetic space). The model will break down if intermediate forms are very numer-
ous, so it is assumed that they are relatively uncommon.

Problems for which this model is suited occur in bacterial taxonomy, and
Gyllenberg (1964, 1965b) has proposed a detailed scheme. Examples of its use are
given by Gyllenberg and Rauramaa (1966). Gyllenberg actually used correlation
coefficients, and also reduced the A-space to three dimensions by principal com-
ponent analysis, but here we describe a more general form.

A taxon is defined by the coordinates of its centroid (X;) and by a radius r,.
Different measures for r; have been mentioned in Section 5.2, including that sug-
gested by Gyllenberg, which is twice the root mean square of the distances of the
OTU’s of the cluster from the centroid, and which is likely to overestimate the
effective radius. It is preferable to determine a radius empirically as described
in Section 5.2, such that it encloses a chosen percentage of OTU’s. The iden-
tification matrix is thus converted into a new matrix, .. This has m rows and
q columns, recording the centroids as the mean value of the characters within
each taxon, together with an additional row vector giving the radii of the
taxa.

The distance between the unknown uand the centroid of each taxon is calculated.
If the distance of u from the centroid of a taxon J, dg, ., is less than r, the unknown
lies within that taxon. If the unknown lies outside any taxon it is recorded as un-
wdentified (or possibly as an intermediate if it lies between two taxa). If u lies within
only one taxon it is identified as belonging to it. Some taxa may overlap, and u
may then lie within the hyperspheres of two or more taxa. Gyllenberg suggests that
the unknown is then best identified with the taxon J for which the ratio ry/d;, , is
greatest. This is not necessarily the same as the taxon whose centroid is nearest to
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u, as can be seen in Figure 8-3 for the unknowns marked u, and u;. This figure also
illustrates the other points of the scheme.

Clearly the system will break down if there is considerable overlap between
hyperspheres, perhaps necessitating reclassification. Overlap is readily found by
testing if any distance between centroids is less than the sum of the appropriate
radii. The system is likely to be satisfactory if the taxa are approximately hyper-
spherical, that is, if character correlations are not, on the average, great.

The center of a taxon is best represented by the centroid, although other central
measures can be used (Section 5.2). The hypethetical median organism of Liston.
Weibe, and Colwell (1963) has been used as the center of taxa by Bogdanescu and
Racotta (1967), and identifications were made by calculating distances from these
Hutchinson, Johnstone, and White (1965) used as the cluster center the OTU with
minimal variance of distances to other members of the cluster. We expect that in
spaces of high dimensionality other central measures like the centrotype would
also be suitable.

In models not explicitly conceived as distance models, but closely analogous
there have been several attempts at calculating probabilities of correct identification

Macnaughton-Smith (1965) suggests for 0,1 data a criterion for identification
that appears to have several advantages. For each taxon J, the constant Cj is
calculated :

Cy=(mn—1logty — Z log(ty — ty,1:)
where

]
Iy 1 = Z Xija

j,|=

Also in each taxon one calculates for each character the quantity A;;

= log(ty — t5,1,) — logty y;

For an unknown, u, one calculates for each taxon in turn the sum of C and all
the A;’s that refer to those characters scored 1 in the unknown. Identification i
with the taxon for which this sum is least. The logarithm of the probability of
misclassification is proportional to this sum. The arbitrary choice of zero for log 0
may be needed to avoid indeterminacy.

Goodall’s deviant index (Goodall, 1966b) can also be used to estimate the prob-
ability of correct identification, as can his probabilistic similarity index (GoodallL
1964, 1966c¢).

Considerable success has been achieved in the difficult field of bacterial identifi-
cation by using a method based on conditional probabilities of 0,1 characters
{(Dybowski, Franklin, and Payne, 1963; Dybowski and Franklin, 1968; Lapage

~
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X,

Xi

FIGURE 8-3

Identification as a process in A-space. The four taxa, A, B, C, and D, are represented by circles. They
have centroids on the two character axes X, and X, shown by the central dots, X,, Xg, X, and X,
and dimensions shown by the radii of the circles r,, rg, rc. and ry,.

An unknown u, lies within circle C and no other, and is identified with C. The unknown u, would
also be allocated to C, although it is closer to the center of D than the center of C. The unknown uj,
which is within both circles C and D would be regarded as an intermediate form, or else allocated to
C by the ratio rule given in the text. This is because the ratio of r¢ to the distance us to X is about 1.4,
greater than the ratio of ry, to the distance of u, to X, (about 1.1). The unknown u, is outside any circle
and remains unidentified.

et al,, 1970). A matrix & is stored in the computer that contains the proportion of
state 1 for each of the m characters (mostly biochemical tests) in the g taxa. The
entries p;, lie between 0 and 1, but they are never set exactly to 0 or 1 for two rea-
sons: {a) some exceptional bacterial strains must always be expected, as well as
occasional mistakes in performing tests; and (b) values of 0 or 1 will rule out a
possible identification completely if an atypical result occurs because this leads
to multiplication by zero in the process described below. In practice limiting values
of 0.01 and 0.99 are suitable. The basic logic is as follows: if in taxon J the propor-
tion of state 1 of a given character k is, say, 0.2, then for that character the prob-
ability that an unknown that scores 1 belongs to taxon J is taken as p,;, which here
equals 0.2. If the unknown scores 0, it is taken as 1 — p,,, here 0.8 Similarly if a
second character, i, is considered, with p,; of 0.7, then the probabilities associated
with state 1 and 0 are taken as 0.7 and 0.3 respectively. On considering both charac-
ters the probabilities are multiplied, so that in this example the probability for an
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unknown with the character states 1 and 1is 0.2 x 0.7 = 0.14. The highest joint
probability is given by an unknown possessing the majority states (in this example
0 and 1 respectively for characters h and i, giving 0.8 x 0.7 = 0.56).

The unknown is therefore compared with each taxon in turn and the individual
probabilities are multiplied together for as many characters as are available, to
obtain L, the joint likelihood values:

Ly=[11Xw+pu—1|
i=1
The above formula assumes independence of characters.

As the number of characters is increased the joint likelihood becomes vanishingly
small for a misidentification. For a correct identification it also falls, but more
slowly. To compensate for this Lapage et al. (1970) calculate L;/Z9. Ly, and call
this the identification score, which seems superior to earlier proposals by Dybowski
and Franklin (1968). If the score reaches a sufficiently high level, such as 0.999.
for the comparison of u with one taxon, this is accepted as a successful identification.
If this level is not reached the program prints out the most likely candidates, and
also valuable information on what tests should be made next in order to clinch
the identification if possible. Figures 8-4 and 8-5 show examples of computer
output.

Your ref. no. 85 Patient’'s name or source Computerlab. no. W 96/97 Run 2
Control 201

The Director

The Public Healith Laboratory

Growth at 37 +99  Growth on MacConkey +89  Oxidase ~ 1 Gelatin 1-5 days -
Gelatin after 5 days — 1 Simmons’ citrate +99 KCN +95 Gluconate -
Malonate —40  Urease — 1 indole ~ 5  H,S lron media e.g. TSI —99
H,S paper +99  Arginine decarboxylase +99  Lysine decarboxylase — 1 Ornithine decarboxylase —15
Methyl red 30/RT +99 Voges-Proskauer 30/RT — 1 Gas from giucose +99 Glucose +99
Cellobiose +99  Dulcitol —55  Lactose +85  Maltose +99
Mannitot +99  Salicin —25  Sorbitol +99  Sucrose -15
Group Identification CIB only 28 Tests done
Score
1 Citrobacter freundii 0-999955
2 Klebsiella ozaenae 0-000045

Identification level reached
Citrobacter freundii

Differs from expected results for this organism

H,S lron media e.g. TSI

FIGURE 8-4

Computer identification: complete identification. The unknown has been identified as Citrobacter
freundii with probability of over 99.99 percent. The next alternative, Klebsiella ozaenae, has a probability
of less than 0.01 percent. The percent values of p,y for Citrobacter freundii on the 28 tests done, the
results (+ or —) found with this unknown, and an aberrant test result, have also been shown. The
figure has been arranged to reflect the format of a report such as a computer line-printer generates
Actual line-printer output would differ in some details. [From Lapage et al. (1970).]
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Your ref. no. 85 Patient’s name or source Computerlab. no. W 96/67.Run 1
Control 201

The Director,

The Public Health Laboratory

Growth at 37 + Growth on MacConkey + Oxidase - Gelatin 1-5 days -
Simmons citrate + KCN + Malonate - Urease -
indole — H_S paper + Gas from glucose + Glucose +
Duilcitol - Lactose + Maltose + Mannitol +
Salicin - Sucrose -
Group Identification CIB only 18 Tests done
Score
1 Citrobacter freundii 0-983566
2 Hafnia alvei 0013304
3 Arizona 0-002403
Test suggested Value Value
in set alone
Gluconate 2 2
Arginine decarboxylase 2 2
Lysine decarboxylase 1 2
Omithine decarboxylase 1 2
CIB only (set value = 6 Key = 6)
Cellobiose 2 2
Sorbito! 2 2
Gelatin after 5 days 2 2
CIB only (set value = 6 Key = 6)
Methyl red 30/RT 2 2
Yoges-Proskauer 30/RT 2 2
CIB only (set value = 4 Key = 6)
H,S Iron media e.g. TSI 2 2
CIB only (set value = 2 Key = 6)

&emaining tests have zero value

FAGURE 8-5

Computer identification: the unknown has not given an identification score that is high enough,
although the most probable answer is Citrobacter freundii. Four sets of new tests are suggested, and
the user may then perform any or all of the four. Commonly the first set is sufficient. The relative value
of the new tests is also indicated (for details see the original article). The figure has been arranged to
reflect the format of a report such as is generated by a computer line-printer. Actual line-printer details
would differ. [From Lapage et al. (1970).]

The scheme implemented by Lapage and his colleagues is now receiving exten-
sive testing and has shown itself to be extremely powerful for identifying bacteria
of medical importance. This is despite the fact it does not take character correla-
tons into account, does not use a criterion to exclude misidentification of strains
of taxa not represented in the matrix (i.e., there is in effect no critical radius of the
taxa if the system is viewed as analogous to a distance model), and may be sensitive
1o vigor and pattern differences. The number of characters required for a high
percentage of identifications is about 30, but this is quite economical since it
represents a ratio of m/q of about 0.5, whereas with conventional methods the ratio
s about 1. Very few misidentifications occur, and the identification rate appears
satisfactory in view of imperfections in the present classification of bacteria (and
consequently in the 2 matrix) and the frequency of aberrant bacterial strains in
nature (for further discussion on these points see Sneath, 1969a, 1972).
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Simultaneous keys are well suited for use on-line with a computer, as the data
tables can be easily stored and the computations swiftly made. Hall (1969a)
describes a modification that makes provision for excluding numerous very un-
likely possibilities, thus increasing the speed of identification. Simultaneous keys
are less useful in printed form, because matching of the unknown on the columns
is troublesome. Several mechanical devices have been suggested for use with them
(Cowan and Steel, 1960, 1965; Olds, 1970), and “peek-a-boo” punched cards can
also be adapted to them (Yourassowsky et al., 1965); such modifications overlap
with sequential techniques described in the previous section.

Other possibilities in simultaneous identification methods are the use of auto-
matic scanning devices, the output of which is discussed in Sections 3.3 and 3.4
These may one day allow identification directly from the specimen. There is alse
rapid advance in automated methods of biochemical analysis, which could be
coupled to an on-line identification scheme.

Related to simultaneous identification techniques are programs developed br
Lance, Milne, and Williams (1968), which take hierarchical classifications or ordina-
tions (and the data matrices underlying these) and output mean differences in
desired characters for any specified groups. Although much information could be
obtained as a by-product of the classificatory procedures, Lance, Milne, and
Williams recommend that it be done as a separate run inasmuch as obtaining all
the possible comparisons would be far too time-consuming and produce excessive
printed output. Also it is impossible to know which particular comparisons will
be of interest until the classifications have initially been obtained and examined
by the investigator.

8.5 DISCRIMINANT ANALYSIS

In previous sections of this chapter we have mentioned the idea of weighting
characters for identification. When the weighting is done in a manner that maxi-
mizes the probability of correctly identifying unknown specimens from a few close
or overlapping taxa it leads to the branch of multivariate statistics that we discuss
in this section. Most of these methods can be viewed as extensions of taxon distance
models, such as the model illustrated in the last section, where the character axes
have been transformed.

Discriminant Functions

A linear discriminant function is a linear function z of characters describing OTU's
that weight the characters in such a way that as many as possible of the OTU’s in
one taxon have high values for z and as many as possible of another have low values.
so that z serves as a much better discriminant of the two taxa than does any one
character taken singly. The n characters are almost always reduced to a smaller set.
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3.16 FIGURE 8-6
412 Three clusters of OTU’s representing three
2.24 taxa, J, K, and L, for two character axes X
and X,. The crosses represent the centroids,
6 which are X; = 2.0, 3.0; X, = 5.0, 40; and
X, X, = 6.0, 2.0. The pooled variance-covariance
5 |- matrix W is:
Characters
3 |- Characters / 0.5 04
2 04 1.0
2| and the inverse matrix W' is:
T ; A 2941 —1.176
0 I L —1.176 1.471
o 1t 2 3 4 5 6 7 8

The Euclidean distances between the centroids
are shown.

m. The function is also such that it has maximal variance between groups relative
to the pooled variance within groups.

As originally described (Fisher, 1936), the discriminant function was applied
10 two taxa, and was later generalized to many taxa. It is calculated from the pooled
variances and covariances between the m characters within each taxon. In its
original form this is a weighted average of the variances and covariances of the
characters in taxa J and K. When generalized, the variances and covariances for:
all the taxa being considered are pooled. In addition, the means of each character
for each taxon are required, representing the centroids of the taxa.

The method is illustrated by Figures 8-6 to 8-8. Figure 8-6 shows three taxa,
J. K, and L for two character axes, X, and X,. The taxa are shown as clusters of
individuals (OTU’s), but we are not now concerned with the values for the indi-
viduals, but only with descriptive parameters of the three clusters. These are their
centroids and their dispersions.

The variances and covariances between the characters are first calculated,
vielding the three m x m matrices (here m = 2); these are then averaged to give a
pooled within-groups variance-covariance matrix W. This is shown in the legend to
Figure 8-6 together with the values of the centroids of the taxa.

To calculate the discriminant function between J and K the inverted W matrix is
multiplied by the vector 8y = [(X;5 — X k), (X235 — Xax)s s (Xpy — Xo))-
This gives the discriminant function as a vector z

_ -1
Zyy = W™ 0,

This vector consists of a series of weights, w;, which we here symbolize as
Z1223,..., 2z, for characters 1, 2,...,m. Inthe example z,x, = —7.647,2.057. These
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weights are then multiplied by the observed character values of the unknown
individual, and summed to give a discriminant score, DS.
DS, =z X0+ 2 Xou + oo + 2 X

This score is used for discriminating between members of J and K by calculating
three reference scores for the centroid of J, for the centroid of K, and for the poim
midway betwéen them—DS;, DSk, and DS, s respectively. These are obtained
from the equations

DS, =X,z
DSx = X7’
DSy 5 = 3(Xy + Xg)Z
= %(DSJ + DSk)
The midway point assumes that the frequency of members of J and K in the

population are equal. The values for the example are shown in Figure 8-7, which
also shows the geometric effect the transformation has on the original character

DS, = —9.123
DSos = —19.57
DSk = —30.007

6.
X2

N7
FIGURE 8-7 X

The effect of the discriminant analysis transformation upon the geometry of Figure 8-6, and the
discriminant score scale for taxa J and K.

The transformation has two effects: the mean intrataxon variance is equalized for each characser
axis, and the axes are skewed (according to functions of the covariances), so as to make the clusters a
nearly hyperspherical as possible. The angle of skewing is shown together with the new scales of the
transformed axes. The discriminant score scale for separating J and K is also shown. The scores ax
calculated as (—7.647 x X|) + (2057 x X,) as explained in the text. For example, an unknown a
X, = 3, X, = 4 has a score of —14.713. The points representing individual OTU’s have been omitiet
for clarity. The discriminant function vector z = — 7.647, 2.057 is obtained by multiplying W™' ta
8, which is (2.0 — 5.0), (3.0 — 4.0) = —3, — 1. See Figure 8-6.
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DSk = —9.993

DSos = —16.758
—DS. = —23.522

6
5
"
X, 3
' ] J: L score
2 ! . Scale
| .
3 . .\100
! ; \90\ :
0 1 2 3 4 5 6 7 8
L-DS, = —65.290 '
DSos = —36.322
DS, = —7.355
FIGURE 8-8

The discriminant score scales for separating taxa J and L, and K and L.

scales. The value of DS, s is halfway between the other two scores and defines a
plane midway between the centroids and perpendicular to the line joining them,
shown by the dashed line in Figure 8-7. If the observed score for an unknown,
DS,, lies on the DS side, the unknown is allocated to taxon J, and if on the DSy
side, to taxon K. The length of the line between the centroids of J and K measured
in discriminant function units is the square root of Mahalanobis’ D? and the
absolute difference between the scores DS, and DSy is also equal to D2.

It should be noted that a different discriminant function, and discriminant
scores, are calculated for each pair of taxa. Figure 8-8 shows the other two dis-
criminant lines; it will be seen that the scales are different in size and orientation.
It will also be evident from Figures 8-6 to 8-8 how discriminant functions are valu-
able when character values overlap, particularly when many characters are involved
and one cannot draw scattergrams of the clusters.

Blackith (1965) has pointed out that the vector angle between two discriminant
function vectors measures contrasts of form of the taxa. If the angle is small the
functions measure similar contrasts of form, and large angles represent distinct
contrasts.

There are two important uses of the distance Dy between the scores DSy and
DSy . First, one can test whether this indicates that the centroids are significantly
different. For this, one uses an F test with m and (¢; + tx — m — 1) degrees of
freedom and tests the ratio

Di(tyt)(ty + tx — m — 1)
(ty + tx)(ty + tx — 2)m
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This ratio is related to Hotellings’ T2, as follows (Rao, 1952, p. 74):
tytk

T? =

2
DJK

Second, one can determine the contribution that each character makes to D2
and hence, see if any of them have such little discriminatory power that they are
unlikely to be worth using. Alternatively, one can choose the best few characters
from the set, and ascertain by the F test whether enough have been selected. The
percent contribution of character i is 100 x (z,6,/D?) where z; and &, are the ith
elements of vectors zy, and 8. This criterion does not consider correlations
between characters ; if two or more characters are correlated they contribute to
D? to a greater extent than this test suggests.

Although it is usual to take the midpoint between centroids as the criterion for
identifying an unknown, there is no reason why one need do this. If it were very
important to be sure of identifying all members of taxon J even at the price of
misidentifying some members of K by allocating them to J in error, one can choose
a criterion lying closer to the center of K than of J. DS, 5 gives equal probability
of misclassification of unknowns from either taxon.

The probability of misclassification can be calculated on the assumption of a
multivariate normal distribution and also that the unknown does belong to J or
K (and not to some distant cluster). A primary purpose of a discriminant function
is to minimize the probability of wrong assignment of unknown individuals. If an
unknown lies upon the DS, side of DS, 5, we can ask how many standard errors it
is from DSy and consult tables of the normal distribution. If it is many standard
errors, then it is very unlikely to be a member of K misclassified as a member of J.
The standard deviation of a taxon in D-space is taken as 1.0 in every direction. The
square root of the difference between DSy and DSk, i.e., D itself, gives the number of
standard deviations the centroids are apart, and half of this corresponds to the
DS, 5 plane. An unknown lying on the DS side therefore is over 3D, standard
deviations from K.

Figures 8-6 to 8-8 illustrate several important points. The use of a given dis-
criminant function implies that the unknown does belong to one or the other of
the two taxa being considered. If instead it belongs to a quite different cluster.
located far off in the space, it may have almost any discriminant score and may thus
appear to belong to one or the other of the two taxa under consideration, when it
really belongs to a third. Also, when there are many taxa one has to test against a
large number of discriminant functions. These two problems are largely overcome
by the use of D? as described below. Harder to overcome is the fact that all the
usual methods of discriminant analysis assume that the dispersion matrices of the
taxa are homogeneous (that is, the clusters all have much the same size, shape, and
orientation in phenetic space) and that the clusters have multivariate normal
distributions.
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) . L "
X, 3 e J-
0 .
4] 1 2 3 4 5 6 7 8
Xy
FIGURE 8-9

The transformation into discriminant analysis space from Figure 8-6 shown in more detail. The points
representing the OTU’s are indicated, together with the Euclidean distances in the new space between
the centroids. These distances are the values of D (i.e., the square roots of D?).

Mahalanobis’ D-space and Multiple Discriminant
Analysis

Figure 8-9 shows the original clusters in the transformed D-space, but without the
discriminant score scales. It was noted earlier that D? could be obtained between
the centroids from the discriminant scores. However following Mahalanobis
(1936), one can calculate it between any pair of points f and g by the equation

D}g = 6’fgvv_lsfg

Then the square root of D? is simply the Euclidean distance in the D-space. This
can be seen in Figure 8-9, where the distances between the centroids are marked.
The method therefore transforms the original space into a new space, in which the
original axes are stretched and also skewed so that they are nolonger at right angles.
The length of a unit in dimension i is p times the original units, where p is the square
root of the a;; element of the matrix W ™!, The direction cosine between the dimen-
sions k and i is equal to a,/,/a,,a;. Gower (1967b) gives a representation with
correlation coefficients.

In the special case where none of the characters are correlated (so that all
covariances are zero) the transformation simply stretches the axes but leaves them
at right angles; the length of a unit in dimension i is then 1/s; times the original
units, where s; is the mean within-cluster standard deviation of character i. That is,
the axes are stretched in inverse proportion to the standard deviation. If in addition
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all variances are equal to s2, then D is 1/s times the ordinary Euclidean distances.
The D units are of a kind that can be called “‘ease of discrimination units.” Con-
fidence limits in D-space can be found from the sampling variance of D?, which is
Dty + 6+ ...+ t,— q).

Canonical Variates

Because D can be represented in an orthogonal system of axes (though the orienta-
tion is arbitrary), one can perform analyses on distances between taxa or individuals,
in particular by principal coordinate analysis (Gower, 1966a, 1967b). Canonical
variates and multiple discriminant analysis are equivalent except in minor particu-
lars. The coordinates of the points in an orthogonal system can be obtained, and
the orthogonal axes are the canonical variates, which can be used also for dis-
crimination. In Figure 8-10 the orthogonal D axes are shown, obtained by principal
coordinate analysis of D distances between th¢ centroids of J, K, and L. It is clear
that one can then readily identify unknowns by seeing whether they fall within
critical distances of taxon centroids. Gower {1966a) points out that though there
is rarely need to do so, one can transform into D-space even if one has only a
single taxon : one considers the whole set of OTU’s as one large group. The positions
of OTU’s will then be made such that the entire set forms a hyperspherical cluster,
within which, of course, there may be subclusters. Note that the relations between
vector lengths are preserved in D-space. An OTU twice as big as another but of
the same shape will lie on the same line from the origin in Figure 8-9, but twice as
far away. Discriminant functions and D? are less sensitive to general size factors
than taxonomic distance; but an unknown of the same shape as a member of a
taxon may appear outside that taxon if it differs much in size.

There are certain difficulties with discriminant analysis. If any character is
invariant in each of the taxa, the matrix W cannot be inverted, unless “‘generalized .
inverses” are used. Yet the character might have a unique state for each OTU, and
by itself be a perfect discriminator. There are also difficulties in choosing the limited
set of best characters from the large number that should be employed in numerical
taxonomy. Characters with means that are well separated in relation to the variances
and that are not highly correlated with other characters are in general the best, but
optimal methods of choosing them pose statistical and computational problems
(see Feldman, Klein, and Honingfeld, 1969). We believe that for most taxonomic
work it will be possible to choose a nearly optimal set by inspection. It has been
shown by Dunn and Varady (1966) that rather large numbers of individuals are
required in each taxon for reliable discriminant functions. The gain in discrimina-
tory power over simpler methods may not be very great (Sokal, 1965) particularly
with 0,1 characters (Gilbert, 1968 ; Kurczynski, 1970) and simple discriminants
based on equal weight for each character can be quite effective (e.g., Kim, Brown,
and Cook, 1963). Discriminant functions have most value for very close clusters
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FIGURE 8-10

Canonical variates I and 11 superimposed on the positions of OTU’s in Figure 8-9. The axes are principal
axes, and the new origin is at the centroid of the three taxon centroids, 4.33, 3.0. The original character
axes are shown by the frame of broken lines. The new axes are scaled in D units, which are effectively
within-taxon average standard deviations in the transformed space.

that partly overlap; good examples are those of Giles and Elliot (1962, 1963) on
human skulls of different sexes and racial groups. Sokal (1965) lists examples of
their use in taxonomy. Hill et al. (1965) obtain a type of discriminant function from
their gradient factor analysis. DuPraw (1965a) achieved excellent discrimination
of wings of honeybees of different geographical origin by multiple discriminant
analysis. Blackith and Reyment (1971) describe numerous applications of D?
discriminant functions, and canonical variates. New discriminant methods have
been suggested by Hall (1968) and Saila and Flowers (1969).

Among references dealing with more complex methods than discriminant func-
tions and D?, and reviewing various parts of the field of discrimination, are Rao
(1952), Sebestyen (1962), Reyment (1963), Kossack (1963), Sokal (1965), and
Chaddha and Marcus (1968). Related work is that of Birnbaum and Maxwell (1961).
Cavalli (1949) discusses the ““‘mean correlation coefficient,” defined as the mean of
the n(n — 1)/2 correlation coefficients between n pairs of characters, and discusses
its relation to Gini’s synthetic coefficient and the work of Zarapkin. Penrose (1954)
found that it is possible to obtain, in a simple manner, good approximations to D?
by using an average measure of the correlations between characters.

Sebestyen (1962) points out that measures that reduce the general size factor
may make discrimination more difficult, but the point at issue is whether the
difference in size in the particular case is indeed a reliable discriminant or an arti-
fact of sampling, for example. Sebestyen considers that the most powerful methods
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are those giving equiprobable envelopes of clusters, but they have been little
developed and require very large numbers of individuals. He also discusses some
nonlinear methods, as does Rohlf (1970). Williams and Lance (1968) also discuss
this general problem under the heading of extrinsic criteria of patterns; they con-
clude that nonlinear multiple regression may sometimes be a suitable technique
but that the area is in need of deeper study.

It may often be useful to employ the simple method of Lubischew (1962) for
testing single characters as discriminators. He calculates his coefficient of dis-
crimination K = (X, — X,g)?/2s? where s? is the pooled variance for character i
from taxa A and B (that is an average weighted by the numbers of individuals). The
greater K is, the better i is as a discriminator. This takes no account of correlation
between characters. The probability of misclassification is approximately the
probability that a normal deviate exceeds ./K/2, so that, for example, with
K = 7.68, 95 percent of identifications will be correct. This requires the distribu-
tions of X in A and B to be approximately normal and of equal variance.

General Conclusions on ldentification and
Discrimination

Recommendations in this area are somewhat tentative because of the small
experience with alternative numerical methods. We suggest that for large studies
with well-separated taxa the sequential methods are best. Simultaneous keys are
useful for highly polythetic groups without much overlap, but discriminant analysis
is indicated where there are a few close groups in which identification must be as
certain as possible. The addition of simple probabilistic values to the traditional
methods should prove rewarding.
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